
On the Compression of SVG Images

Sander Ginn
sander@ginn.it

November 9, 2017, 52 pages

Academic supervisor: dr. Clemens Grelck

Host supervisor: Rolf Timmermans

Host organisation: Voormedia, http://www.voormedia.com

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Master Software Engineering

http://www.software-engineering-amsterdam.nl

mailto:sander@ginn.it
http://www.voormedia.com
http://www.software-engineering-amsterdam.nl

Contents

1 Introduction 1
1.1 Image compression . 1
1.2 Scalable Vector Graphics . 1
1.3 Host company . 2
1.4 Problem statement . 2
1.5 Research questions . 3
1.6 Thesis outline . 3

2 Background 4
2.1 Bézier curves . 4
2.2 Scalable Vector Graphics . 5
2.3 GIS and line simplification . 8

3 Prototype design 9
3.1 Solution hypothesis . 9
3.2 Prototype description . 9
3.3 Arc to cubic Bézier conversion . 9
3.4 De Casteljau’s algorithm . 11
3.5 Ramer-Douglas-Peucker algorithm . 12
3.6 Polyline to cubic Bézier conversion . 14
3.7 SVGO . 15
3.8 Gzip . 16
3.9 Software stack . 16

4 Experiment design 17
4.1 Experiment goals . 17
4.2 Image fidelity validation . 17

4.2.1 Image comparison . 17
4.2.2 Acceptable loss of fidelity . 18

4.3 File size reduction . 19
4.4 Dataset . 19
4.5 Experiment implementation . 20

4.5.1 SSIM index value measurement . 20
4.5.2 Parameter bounds . 20
4.5.3 Execution . 20

5 Results 21
5.1 Method of presentation . 21
5.2 Clipart images . 21

5.2.1 ‘Excellent’ results . 23
5.2.2 ‘Good’ results . 23
5.2.3 ‘Bad’ results . 25

5.3 Logos without text . 29
5.3.1 ‘Excellent’ results . 29

i

5.3.2 ‘Good’ results . 30
5.3.3 ‘Bad’ results . 31

5.4 Logos with text . 35
5.4.1 ‘Excellent’ results . 35
5.4.2 ‘Good’ results . 35
5.4.3 ‘Bad’ results . 37

5.5 Images with embedded image . 41
5.5.1 ‘Excellent’ results . 41
5.5.2 ‘Good’ results . 42
5.5.3 ‘Bad’ results . 42

6 Discussion 46
6.1 Prototype performance . 46
6.2 Future work . 47

7 Conclusion 49

Bibliography 50

ii

Abstract

Compression of raster-based images is a widely researched field. Compression of their vector-based
counterparts is not, as their scale invariance cannot be compromised. SVG is the most common type
of vector-based images. The amount of data points used to describe an SVG image can be redundant,
making the image larger than necessary.

We developed a six-step approach that reduces the file size by simplifying curves in the image. The
approach was implemented in a prototype. A set of test images were used to evaluate the prototype
with varying parameters for the conversion steps. The output images were then compared to the
input file by calculating the SSIM index metric.

The results indicated that the method produces good results for images with specific traits. Images
with a lot of curves yielded the best results. In contrast, images with a lot of straight lines failed
often. The results show that compression of SVG images is possible to at least some extent. We
conclude that a one-size-fits-all solution is not yet reasonable. Future work should focus on improving
the results of images with a lot of straight lines and sharp corners.

iii

Acknowledgements

I would like to thank Rolf for his continuous support and input, Clemens for the feedback on my
academic approach, and Voormedia for facilitating my research. Furthermore, my appreciation goes
to the entire Voormedia team for the enjoyable time I spent in the office. Finally, I would like to
extend my sincere gratitude to Janelle for making my life better in so many ways.

iv

Chapter 1

Introduction

This chapter introduces the problem domain. Section 1.1 explains the basics of image compression. In
Section 1.2, the scalable vector graphics format is discussed. A brief introduction of the host company
is given in Section 1.3. Section 1.4 states the research problem, and Section 1.5 lays out the research
questions. Finally, a thesis outline is provided in Section 1.6.

1.1 Image compression

Image compression is the act of compressing the data that describes an image. It mainly serves
to minimise storage and transfer costs. Lossless compression applies techniques to compress the
data in such a way that the image remains identical after compression. It usually results in marginal
compression results. In contrast, lossy compression approximates and discards data in order to achieve
reduced data size. The quality of an image can often be compromised to an extent where the fidelity
of the image remains sufficient for the intended purpose while reducing the file size dramatically. This
is desirable for use cases such as websites: smaller images load faster and thus reduce loading time of
a page, which is a major influence on the perceived quality of a website [24].

Existing image compression methods such as JPEG and PNG apply to raster-based graphics.
Raster-based images have predefined dimensions which compose the image raster. Each pixel in
the raster is assigned a color value. Lossy compression methods use one or more techniques to re-
move data per pixel or group of pixels. JPEG, for example, applies a discrete cosine transform to
blocks of 8 × 8 pixels to separate frequencies in each block. It then discards the least important
frequencies through quantisation. The remaining frequencies are collected in the output file and are
Huffman-encoded [6].

1.2 Scalable Vector Graphics

An emerging image format is Scalable Vector Graphics (SVG). An SVG image is, as the name suggests,
comprised of vectors rather than pixels. The main advantage of vector-based graphics is that it is
scale invariant, as the image is rasterised by the client that displays it based on the raster features
of the display. If the image is zoomed in or out it is rasterised again, and so the image is crisp at
all times [9]. Furthermore, SVG is an extension of the Extensible Markup Language (XML) and
compatible with HTML. These features make SVG highly suitable for web use, since it facilitates
responsive web design and is supported by all modern browsers by default. Design elements such as
logos are often SVG images, since they are rendered on a large variety of dimensions.

1

1.3 Host company

Voormedia B.V.1 is an Amsterdam based company specialised in digital media production. Two of
their core products include TinyPNG2 and TinyJPG3. These products lead their respective markets
in image compression due to the user friendly nature: their algorithms automatically determine the
optimal compression parameters to ensure the best ratio of size reduction to image quality. As a result,
their in-house knowledge on image compression is very rich, and they are interested in exploring future
ventures to expand this knowledge in terms of SVG compression.

1.4 Problem statement

Due to the scalable nature of SVG, applying some form of compression to these types of images sounds
counter-intuitive at first. After all, the traditional concept of image compression limits how much an
image can be scaled before the quality of the image becomes unacceptable, and a key feature of SVG
is limitless scaling.

However, since SVG is an extension of XML, and therefore defined by tags and text, we can treat
the file as such: a text file. By default, SVG supports gzip compression, which has demonstrated file
size reductions of up to 85% [9]. Although the size reduction can be significant, it does not account
for other factors that contribute to a larger file size. The main area of improvement not addressed by
gzip is redundant and poorly structured data. For example, redundancy occurs in SVG files exported
by Adobe Illustrator4, one of the leading vector drawing applications. They can contain metadata
specific to the application which allows all editor traits such as layers and brushes to be preserved
when the file is reopened. This metadata significantly increases the file size without changing the
visual appearance of the image [14]. An example of poorly structured data is the unnecessary use of
<g> tags, which define groups of elements to which filters and display styles can be applied. Group
tags can be used without actually defining any properties for it, much like the <div> tag in HTML,
which does not alter the visual appearance, but increases the file size.

Since the aforementioned issues do not impact the appearance of the image itself, addressing them
should be seen as a form of lossless compression. Previous work has been done in this field, which will
be used in this research. Section 3.7 will describe the specifics of this work. One of the main areas of
focus of this research is the feasibility of lossy compression of SVG files. A very simple motivational
example is shown in Figure 1.1a. The black line is the result of the first <path> element and the red
line corresponds to the second <path> element in Figure 1.1b. The lines are visually identical, but
the red line is composed of two Bézier curve elements, while the black line uses only one. Thus, in
this case the red line could theoretically be compressed without any loss of quality. The assumption
that drives this research is that more complex SVG images contain lines that are ‘overdefined’; lines
that can be represented by less data points with an acceptible loss of fidelity.

(a) Different paths but identical lines

<svg xmlns="http ://www.w3.org /2000/ svg" width="2000"

height="750" version="1.1">

<path d="M100 ,100 C 1000 ,750 1500 ,300 1900 ,500"

style="stroke:black; fill:none; stroke -width :10px;"/>

<path d="M100 ,100 C 550 ,425 900 ,475 1187.5 ,468.75 C 1475 ,462.5

1700 ,400 1900 ,500" style="stroke:red; fill:none;

stroke -width :10px;" transform="translate (0,50)"/>

</svg>

(b) SVG data

Figure 1.1: An example of how two distinct paths produce the same result

1http://voormedia.com
2http://tinypng.com
3http://tinyjpg.com
4http://www.adobe.com/products/illustrator.html

2

http://voormedia.com
http://tinypng.com
http://tinyjpg.com
http://www.adobe.com/products/illustrator.html

1.5 Research questions

We aim to establish the feasibility of SVG compression at the expense of quality, thus the first research
question is:

RQ 1. Can lossy compression be applied to SVG images, making the reduction in
fidelity worthwhile?

To answer RQ 1, it is necessary to define a ‘worthwile reduction of fidelity’. Since Voormedia has
extensive knowledge in image compression, we will use their knowledge to answer research question
2:

RQ 2. When is a reduction in fidelity worthwhile?

Like the other compression tools offered by Voormedia, it is desirable that the optimal algorithm
parameters are determined automatically. Therefore, the third research question is:

RQ 3. Can the algorithm parameters be approximated for optimal compression results?

While the fundamental difference between raster-based and vector-based images prevents implementation-
specific knowledge from being reused, it is likely that Voormedia has other, more general knowledge
available that can be applied to this research. Similar to RQ 2, the last research question is:

RQ 4. How can existing knowledge on image compression be applied to SVG?

1.6 Thesis outline

Chapter 2 provides background regarding Bézier curves, the SVG file format and line simplification.
Chapter 3 discusses the implementation of the prototype. In Chapter 4, the experiment design is laid
out. The results of the experiment are reported in Chapter 5. We then discuss the results and explore
future work in Chapter 6. Finally, Chapter 7 concludes this thesis.

3

Chapter 2

Background

This chapter provides background information about fundamental concepts that play a central role
in this research. First, Section 2.1 explains how Bézier curves work. Next, Section 2.2 describes the
SVG file format. Finally, related work is outlined in Section 2.3.

2.1 Bézier curves

In the early 1960’s, Pierre Bézier developed a method of curve formulation while working at Renault.
The goal was to simplify the process of shape design, which was a time consuming process at the
time. The result was the Bézier curve, a curve formula that was both intuitive to use and did not
require extensive knowledge of mathematics [33].

A Bézier curve is defined by a polygon that is referred to as the Bézier polygon. Perhaps a more
suitable name would have been the Bézier polyline, as it is not required that the polygon is closed.
The polygon consists of a start and an end point, combined with a number of control points. The
number of control points does not have a limit. However, there are two Bézier curves that are used
most frequently: the quadratic Bézier curve is drawn using one control point, and the cubic Bézier
curve uses two control points. Examples of each type are shown in Figure 2.1. When more control
points are used, the calculation process does not scale well timewise, and therefore, more complex
curves are usually defined by chaining quadratic and cubic Bézier curves [3].

Coincidentally, Paul de Casteljau developed a very similar solution a few years before while work-
ing for Citroën. Because Citroën kept his findings confidential, Bézier’s work received more credit.
However, the computation of points on the Bézier curve for the corresponding polygon is most effec-
tive through the algorithm developed by De Casteljau. This algorithm is also part of our proposed
solution. This method of point calculation is described in Section 3.4.

(a) Quadratic Bézier curves (b) Cubic Bézier curves

Figure 2.1: Examples of the two most prevalent Bézier curves. The dashed line represents the Bézier
polygon

4

2.2 Scalable Vector Graphics

The SVG file format is an open standard developed by the World Wide Web Consortium (W3C). The
SVG Working Group was founded in 1998 out of a growing concern about the shortcomings of HTML
with respect to proprietary graphics technologies [28]. These image types required workarounds to
be used in combination with HTML, leading to undesirable design patterns. In order to address this
issue, the W3C invited industry leaders to collaborate in the development of an open, patent-free
standard for vector graphics. At the same time as the SVG Working Group formed, the Extensible
Markup Language (XML) was quickly becoming the de facto standard for encoding documents in
a manner that is easy to interpret by both humans and machines. It is highly favored for specific
applications. Due to its concise but strict set of syntax rules, parsing XML extensions is independent
of its grammar [22]. Furthermore, XML integrates seamlessly with Cascading Style Sheets (CSS) for
optimal reuse of style elements in of SVG images.

Due to these properties, the SVG Working Group decided to opt for an extension of XML as the
new file type. Out of the submissions that they received from the group members, four incorporated
XML in their proposals [13]:

• Web Schematics, proposed by CCLRC

• Precision Graphics Markup Language (PGML), proposed by Adobe, IBM, Netscape, and
Sun Microsystems

• Vector Markup Language (VML), proposed by Autodesk, Hewlett-Packard, Macromedia,
and Microsoft

• DrawML, proposed by Excosoft

Out of these four submissions PGML and VML were the top contenders, but both had their own
issues, and so the decision was made to take the best of both submissions to form the recommendation
for SVG 1.0 [23]. Newer versions of SVG focus on incorporating new versions of web features such as
HTML [10].

The latest specification, SVG 1.1, describes a number of areas that together compose the suite
of SVG functionality. We outline the areas that are relevant to this research in this section. Filter
effects [41] are not described as it is a rather complex domain and remain unaltered in this research;
other areas pertain to interactive web use such as animated and scripted SVG images.

Structure elements A number of core elements are part of SVG that are used to introduce the
necessary structure to an SVG image [40]. Without these elements, styling the SVG would be a
very cumbersome task. Aside from this, several elements for accessibility are implemented so that
the data can be at least partially meaningful in situations where the image can not be rendered
or is interpreted by machines. The relevant elements are detailed in Figure 2.2.

Basic shapes SVG contains a set of 6 basic shapes which can be used with their respective tags [38].
Figure 2.3 defines these shapes.

Paths Aside from the basic shapes SVG also implements the path element, denoted by the <path>

tag [45]. In essence, the path element is used to create any shape that is not covered by the basic
shapes. A path element has only one mandatory attribute, d, which contains the path data.
The path string that belongs to this attribute is extremely flexible in how it can be defined. An
example of this flexibility is shown in Figure 2.4: these paths all produce the same two lines
through different syntax. For example, the spaces between the coordinates pertaining to the last
issued command on line 2 can be replaced by commas; the space between the last coordinate and
new command can be ommitted; if the next path component is of the same type as the previous
then the command for the new component can also be ommitted, as on line 4; if the command
is capitalised the coordinates are absolute, whereas lowercase means relative to the last position.
These are just a few examples of the versatility of the path data, and they can also be used in

5

Tag Unique attributes Description

<svg> version, width, height the root tag of an SVG file, containing information
about the entire document

<g> - a container element that groups the inner elements
together, allowing all elements to be styled at once
and enables reuse of objects

<defs> - elements defined inside this tag are not rendered
until they are referenced later, which is useful for
structuring properties such as filters and masks

<desc>/<title> - descriptors for accessibility purposes, such as screen
readers

<use> x, y, width, height references the id of an <svg>, <g> or other <use>

element in order to render the same element and its
children at the provided coordinates

Figure 2.2: Structure elements of SVG

Tag Unique attributes Description

<rect> x, y, width, height draws a rectangle starting at (x, y) with the specified width

and height

<circle> cx, cy, r draws a circle with (cx,cy) as the center point and radius r

<ellipse> cx, cy, rx, ry draws an ellipse with (cx,cy) as the center point, rx as the
horizontal radius, and ry as the vertical radius

<line> x1, y1, x2, y2 draws a straight line from (x1,y1) to (x2,y2)

<polyline> points draws a sequence of straight lines with the coordinate pairs
in points

<polygon> points draws a closed shape composed of a set of connected lines
with the coordinate pairs in points

Figure 2.3: The basic shapes of SVG

combination. While this can be beneficial, it also increases the complexity of parsing the data.
The complete set of commands that can be used in a path element is described in Figure 2.5,
and simple examples of each command are illustrated in Figure 2.6.

1 <svg xmlns=”http ://www.w3 . org /2000/ svg” ve r s i on=” 1 .1 ”>
2 <path d=”M10 10 L 100 100 L 150 150” />
3 <path d=”M10,10 L100 ,100 L150 ,150 ” />
4 <path d=”M10 10L100 100 150 150” />
5 <path d=”M10 10 l90 90 50 50” />
6 </svg>

Figure 2.4: Syntactically different, semantically identical paths

Text SVG has a dedicated text element that uses the <text> tag to render the text content within
the tags [46]. It is rendered as XML character data, which means it is treated as any other text.
Hence, it can be searched for, highlighted, and indexed by search engines. The text is rendered
at the provided (x,y) parameters. A single text element can have multiple stylings attached to
it by defining span elements with <tspan>.

6

Token Parameters Description

M/m x y moves the point to (x,y) to start a new sub-path

Z/z - closes the sub-path by drawing a straight line to the path’s initial
point

L/l x y draws a line to (x,y)

H/h x draws a horizontal line to the point with x and unchanged y

V/v y draws a vertical line from to the point with unchanged x and y

C/c x1 y1 x2 y2 x y draws a cubic Bézier curve to (x,y) with control points (x1,y1)

and (x2,y2)

S/s x2 y2 x y draws a smooth cubic Bézier curve to (x,y) where the first control
point is equal to the second control point of the preceding C or S
command

Q/q x1 y1 x y draws a quadratic Bézier curve to (x,y) with control point
(x1,y1)

T/t x y draws a smooth quadratic Bézier curve to (x,y) where the con-
trol point is equal to the control point of the preceding Q or T
command

A/a rx ry

x-axis-rotation

large-arc-flag

sweep-flag x y

draws an elliptical arc to (x,y) with radii (rx,ry).
x-axis-rotation indicates how the ellipse is rotated.
large-arc-flag determines whether the long or short path
between (rx,ry) and sweep-flag states whether a negative or
positive drawing angle is used

Figure 2.5: Path commands

Figure 2.6: From left to right, top to bottom: output for tokens L, H, V, C, S, Q, T, A. The header of
each example contains the path data string

Gradients and patterns Shape, path, and text elements can be filled or stroked with a gradient,
color or pattern [42]. SVG implements two types of gradients: the <linearGradient> and
<radialGradient>. The linear gradient moves in a linear direction, gradually shifting between
the defined colors. The radial gradient is a circular gradient, moving outwards of a defined center

7

point. The actual colors and their offsets are defined in <stop> elements within the gradient tag.
The <pattern> element is in essence its own canvas where the pattern can be designed with any
functionality that SVG supports.

Clipping and masking SVG supports clipping paths and masks through the <clipPath> and
<mask> tags [39]. A clipping path defines an outline that hides any elements not within its
borders. A mask is more detailed than a clipping path by allowing different properties to be
defined within the masked area, such as partial opacity.

2.3 GIS and line simplification

Although no comparable research has been conducted which relates directly to SVG compression, a
part of this research builds upon a technique that is often used in geographic information systems
(GIS). These systems are designed to represent geographic data and allow the user to zoom in and
out, so the desired amount of data is viewed. As the user zooms in, the data can be displayed in
greater detail and vice versa on zooming out. This requires the system to dynamically adjust the
fidelity of geographic data. Many GISs take a vector-based approach to tackle this problem [25].

One particular technique that is commonplace in these systems is line simplifcation [7, 30]. In the
context of a GIS, this is used to determine with which precision lines should be displayed based on
the zoom level. As Figure 2.7a shows, the lines of the canal within the red square do not display the
same level of detail as the same area in Figure 2.7b. This is a result of applying line simplification to
the data points that describe the contours of the canal. This technique can be used to address the
problem of ‘overdefined’ lines, as described in Section 1.4.

The process of simplifying lines is applied in a variety of fields, aside from GISs. In the field of
computer vision, line simplification is used to filter superfluous data from sensors in order to speed
up recognition algorithms and to cope with noisy outliers [16]. In computer graphics, it finds its use
in cases like video games and flight simulators [15].

In an evaluation of line simplification algorithms, Shi and Cheung analysed 9 different line simpli-
fication algorithms [34]. The algorithms were evaluated based on the visual difference, displacement,
shape distortion, and computation time using the results of simplifying a set of test cases. In terms of
visual difference, the Ramer-Douglas-Peucker algorithm proved to be the most accurate. However, at
the same time, it is one of the most time consuming algorithms. Because speed is not a primary con-
cern in this research, we have opted to use the Ramer-Douglas-Peucker algorithm for our prototype.
The algorithm is described in detail in Section 3.5.

(a) Zoomed out view of Amsterdam’s center (b) Zoomed in view of Amsterdam’s center

Figure 2.7: Different zoom levels demonstrating line simplification

8

Chapter 3

Prototype design

This chapter outlines the implementation of the prototype. First, Section 3.1 describes the hypothesis
behind our solution and the intended goals of the prototype. Section 3.2 discusses what steps are
taken to achieve the intended goals. Sections 3.3 to 3.8 describe the steps in greater detail. Finally,
Section 3.9 briefly discusses what technology is used in the prototype.

3.1 Solution hypothesis

As discussed in Section 1.4, the hypothesis being tested in this research is that SVG files can contain
lines that are ‘overdefined’. We assume that the number of data points that describe these lines can
be reduced while maintaining an acceptable level of image fidelity. Section 4.2 defines what is deemed
acceptable and how it is validated.

3.2 Prototype description

To achieve the desired effect as described in Section 3.1, we implement a prototype that applies a
number of algorithms to an input SVG file. The algorithm takes a 6-step approach of preparation,
compression, and finalisation. We show a pipeline view of the prototype in Figure 3.1. First, we
prepare the input file by converting arcs to polylines. Additionally, paths are converted to polylines
with De Casteljau’s algorithm. Next, all line elements are simplified with the Ramer-Douglas-Peucker
algorithm to remove redundant data. The line elements are then evaluated for conversion to cubic
Bézier curves. In some cases, lines are left as is, since it makes no sense to convert straight lines to
Bézier curves. Furthermore, acute angles are preserved through two line elements.

With respect to lossless compression, we evaluated several tools that serve the same purpose in how
they approach the problem [35, 5]. It quickly became apparent that these tasks are quite trivial in
terms of complexity but significant in terms of implementation time. Taking time constraints and the
scope of this research in consideration, we decided to reuse these existing tools rather than reinventing
the wheel. Should the result of this research be developed further, this part of the prototype pipeline
will be implemented in a bespoke module. To achieve maximum compression results, the final result
is gzipped.

3.3 Arc to cubic Bézier conversion

The first processing step in the pipeline converts arc elements in each path to one or more cubic Bézier
curves. While other shapes such as circles or rectangles are left as is, arc elements are converted as
they can be reconstructed with Bézier curves efficiently. Especially when the arc is preceded and
succeeded by other elements (in other words, not the first or last path element), the arc can ‘overflow’
into the neighbouring Bézier elements. The conversion is performed by the set of equations reported
in this section [43].

9

Input
file

Convert arc elements
to cubic Bézier

curves

Convert cubic
Bézier curves to

polylines with De
Casteljau’s algorithm

Simplify lines with
Ramer-Douglas-

Peucker algorithm

Convert lines back
to cubic Bézier

curves

Apply SVGOGzip result
Output

file

Figure 3.1: SVG processing pipeline. The blue nodes indicate preparatory steps, the red nodes indi-
cate lossy compression steps, and the green nodes indicate lossless compression steps

Figure 3.2 describes the set of parameters that are used in the arc command and how they will be
referred to in the equations.

Symbol Description

(x1, y1) the coordinates of the current point on the path

rx and ry the radii of the ellipse

φ angle from the x-axis on the current coordinate system to the x-axis of the ellipse

fA large arc flag, which for arc span α is 0 if α ≤ 180◦ or 1 if α > 180◦

fS sweep flag, which is 0 if the arc is drawn along the inner circle, and 1 if it is drawn
along the outer circle

(x2, y2) the coordinates of the final point of the arc

Figure 3.2: Arc symbols and parameters

First, the origin is normalised and any rotation is removed with (3.1):

(
x1
′

y1
′

)
=

(
cosφ sinφ

− sinφ cosφ

)
·

x1 − x2

2
y1 − y2

2

 (3.1)

We then correct radii that are out of range. If the radii do not meet the constraints in (3.2), then this
is a straight line from (x1, y1) to (x2, y2) and we stop. Otherwise, we take the absolute values of the
radii and calculate the lambda value with (3.3) using the results from (3.1).

rx 6= 0, ry 6= 0 (3.2)

Λ =
(x1
′)2

|rx|2
+

(y1
′)2

|ry|2
(3.3)

If Λ ≤ 1, the radii need no further corrections. If Λ > 1, then the radii are corrected with (3.4).

rx =
√

Λrx, ry =
√

Λry (3.4)

10

The next step calculates the coordinates which represent the center of the arc in the adjusted coor-
dinate system with (3.5) and transforms it back to the original coordinate system with (3.6).

(
cx
′

cy
′

)
= ±

√
r2xr

2
y − r2x(y1′)2 − r2y(x1′)2

r2x(y1′)2 + r2y(x1′)2

rxy1

′

ry

−ryx1
′

rx

 (3.5)

(
cx

cy

)
=

(
cosφ − sinφ

sinφ cosφ

)
·

(
cx
′

cy
′

)
+

x1 + x2

2
y1 + y2

2

 (3.6)

The following step is to compute θ1 and ∆θ. To do so, we need to calculate the angle between two
vectors with (3.7), applying it to (3.8) and (3.9).

∠
(
~u,~v
)

= ± arccos
~u · ~v
||~u|| ||~v||

with ± equal to the sign of uxvy − uyvx (3.7)

θ1 = ∠

(

1

0

)
,

x1
′ − cx′

rx
y1
′ − cy ′

ry

 (3.8)

∆θ ≡ ∠

x1
′ − cx′

rx
y1
′ − cy ′

ry

 ,

−x1′ − cx′

rx
−y1′ − cy ′

ry

 mod 360◦ (3.9)

We then use the results of (3.8) and (3.9) to approximate the control points for each segment
with (3.10) [29], where {p1, p2, p3, p4} correspond to the start, first control, second control and end
points. As a final step, we need to transform the unit arc points back to the original coordinate
system with (3.11) and the results of (3.4) and (3.6).

α =
4

3
tan

∆θ

4
(x1, y1) = (cos θ1, sin θ1)

(x4, y4) = (cos(θ1 + ∆θ), sin(θ1 + ∆θ))

(x2, y2) = (x1 − (y1α), y1 + (x1α))

(x3, y3) = (x4 + (y4α), y4 − (x4α))

(3.10)

x = xrx, y = yry

xp = (cosφ)x− (sinφ)y

yp = (sinφ)x+ (cosφ)y

x = xp + cx, y = yp + cy

(3.11)

After these operations an arc is transformed into one or more cubic Bézier curves in the form of a
start and end point and two control points, which is the same notation SVG uses.

3.4 De Casteljau’s algorithm

The next processing step converts all Bézier curves to a sequence of lines. To achieve this, we use De
Casteljau’s algorithm [4]. The algorithm works as follows, with control points {p0, p1, p2, p3}:

• Pick a range of values V with the constraint 0 ≤ t ≤ 1. A larger quantity of values will result
in a smoother curve.

11

• For each value t ∈ V , do

– split the line segments p0p1, p1p2 and p2p3 with p1n = (1− t)pn + tpm;

– for the new line segments p10p11 and p11p12, split the line segment again with p2n =
(1− t)p1n + tp1m;

– split the last line segment p20p21 with pt = (1− t)p20 + tp21.

• The set T = {pt1, pt2, . . . } contains the points that can be connected to approximate the Bézier
curve.

Figure 3.3 illustrates the result for t = {0.25, 0.5, 0.75} for a set of control points {p0, p1, p2, p3}.
Pseudocode of the algorithm is shown in Figure 3.4.

Figure 3.3: An illustration of De Casteljau’s algorithm. P0-P3 are the Bézier control points. The red
and blue points are the result of the first and second iteration respectively. The green
point denotes the final value on the curve for a given t

1: function DC(points, t)
2: temp points ← points
3: last ← length(points)−1
4: for k ← 1 to last do
5: for i← 0 to n− k do
6: temp points[i] ← (1− t) ∗ temp points[i] + t ∗ temp points[i+1]
7: end for
8: end for
9: return temp points[0]

10: end function

Figure 3.4: Pseudocode for De Casteljau’s algorithm

3.5 Ramer-Douglas-Peucker algorithm

The previous step generates a vast amount of data, of which the majority can be discarded. To
achieve this, we apply the Ramer-Douglas-Peucker algorithm, a divide-and-conquer algorithm for line

12

simplification that uses a threshold to determine whether or not a data point should be discarded [12].
The algorithm works as follows, for a threshold ε:

• Draw a temporary line between the first and last point in the dataset.

• Find the point of which shortest distance δ to the line of step 1 is the furthest away.

• Two cases can now be distinguished:

– δ < ε: all points that are not marked to be kept in between the two points are discarded
from the data set. The algorithm recurses with the current end point as the starting point
and the line’s last point as end point;

Figure 3.5: An example of the Ramer-Douglas-Peucker algorithm. The cyan area demarcates maxi-
mum distance values smaller than ε. Each step evaluates the point furthest away from the
line between the current points. Points marked red are removed, whereas points marked
green remain. Dashed lines represent removed line segments.

13

– δ > ε: the furthest point must be kept. The algorithm recurses with the same start point
and the furthest point as the end point.

• When two points are evaluated with no intermediate points, the last line segment has been
reached and the algorithm terminates.

An application of the algorithm is shown in Figure 3.5, where the line in the last frame represents the
simplified line. Pseudocode of its functionality is shown in Figure 3.6.

1: function RDP(points, ε)
2: d max ← 0
3: index ← 0
4: last ← length(points)−1
5: for i← 1 to last do
6: d ← perpendicularDistance(points[i], points[0], points[last])
7: if d > d max then
8: index ← i
9: d max ← d

10: end if
11: end for
12: if d max > ε then
13: left results ← RDP(points[0..index], ε)
14: right results ← RDP(points[index..last], ε)
15: final results ← left results + right results
16: else
17: final results ← {points[0], points[last]}
18: end if
19: return final results
20: end function

Figure 3.6: Pseudocode for the Ramer-Douglas-Peucker algorithm

3.6 Polyline to cubic Bézier conversion

Finally, we apply an algorithm for fitting a set of points to a curve that was developed by Schneider
in 1990 [32]. The algorithm works as follows, for error threshold ε:

• Compute the approximate tangents at the start and end points of the curve by fitting a least-
squares line to the points in the neighbourhood of the start and end point. These tangents
provide the direction of the second and third control points.

• Assign an initial parameter value ui to each point di using chord-length parameterisation.

• Calculate distances α1 and α2 for the second and third control points.

• Fit a cubic Bézier curve with control points {p0, p1, p2, p3} to the input points. p0 is equal to
the start point, p1 is equal to α1∗ left tangent, p2 is equal to α2∗ right tangent and p3 is equal
to the end point.

• Compute the error η between the generated curve and input points. Two cases can be distin-
guished:

– η > ε: even though the error is unacceptable, chord-length parameterisation is a fast but
inaccurate method of approximating the points. By applying Newton-Raphson iteration,
the points are approximated more accurately. We try to fit the new values to a single cubic
Bézier curve once more. If the error is still too large, we split the input data at the point
of greatest error and recursively try and fit a curve to each data set.

14

– η < ε: the input data can be fitted to a curve with an acceptable error margin, and we
return the control points of the curve.

• When the last recursive call terminates, the algorithm returns a set of control points for each
curve segment that is needed to draw the input data points.

Along with the chapter in which the algorithm is described, Schneider published C code that imple-
ments the algorithm. Pseudocode of the algorithm is shown in Figure 3.7.

1: function FitCurve(points, ε)
2: last ← length(points) −1
3: left tangent ← ComputeUnitTangent(points[0], points[1])
4: right tangent ← ComputeUnitTangent(points[last-1], points[last])
5: FitCubic(points, left tangent, right tangent, ε)
6: end function
7: function FitCubic(points, left tangent, right tangent, ε)
8: parameterised points ← ComputeChordLengthParameterisation(points)
9: bezier curve ← ConstructBezier(left tangent, right tangent, parameterised points)

10: maximum error ← ComputeMaxError(bezier curve, points)
11: if maximum error < ε then
12: return bezier curve
13: end if
14: if maximum error < ε2 then
15: for i← 0 to max iterations do
16: parameterised points ← ReparameteriseNewtonRaphson(points)
17: bezier curve ← ConstructBezier(left tangent, right tangent, parameterised points)
18: maximum error, split point ← ComputeMaxError(bezier curve, points)
19: if maximum error < ε then
20: return bezier curve
21: end if
22: end for
23: end if
24: . Fitting failed, retry with split elements
25: center tangent ← ComputeUnitTangent(points[split point-1], points[split point+1])
26: left beziers ← FitCubic(points[0..split point], left tangent, center tangent, ε)
27: right beziers ← FitCubic(points[split point..last], center tangent, right tangent, ε)
28: return left beziers + right beziers
29: end function

Figure 3.7: Pseudocode for fitting a cubic Bézier curve to a set of points

3.7 SVGO

SVGO is a tool written with Node.js that performs a number of optimisations on an SVG file without
changing the image visually [35]. Examples of these optimisations are

• removing comments,

• removing hidden elements,

• collapsing nested groups,

• trimming whitespace,

• reducing decimal precision.

In some cases, SVGO reduces the file size up to 90%, although this only applies to very poorly
structured SVG files. Generally, a reduction between 20% and 60% is expected.

15

3.8 Gzip

The gzip compression tool is based on the DEFLATE algorithm. This algorithm combines LZ77
compression with Huffman encoding for lossless compression [1].

LZ77 compression works by replacing words that have occurred before by replacing the word with
a reference to the first occurrence. The reference is composed with a length and offset parameter in
bytes. When the compressed string is decoded, the references are replaced with the words again.

Huffman encoding is then applied in order to compress the symbols that were unaffected by LZ77
compression. In essence, Huffman encoding determines the frequency at which individual characters
occur. It then encodes the characters in bytes, where characters that occur the most frequent are
encoded in the smallest byte representation. While the least frequent used characters might consume
more space in their encoded form, on average this technique will reduce file size.

A downside of gzipping SVG files is that it no longer allows the file to be rendered progressively [44].
Most SVG viewers, such as those of modern browsers, have implemented their render engine in such
a way that the SVG file is rendered even if it is not fully loaded. This is particularly convenient for
larger files, since it allows the user to interact with SVG elements as soon as they are loaded.

3.9 Software stack

We have opted to use Python [37] for our prototype implementation. The main advantages of Python
are its simplicity and its repository with a large amount of third party libraries. Python is considerably
slower than C++ [21], the language used by Voormedia for their existing compression tools. However,
since performance in terms of speed is not within the scope of this research, this is not considered to
be of issue.

SVG processing The prototype uses two libraries for processing SVG files. Svgpathtools [27] is
a library that offers an object-oriented model for SVG elements. Treating elements as objects
simplifies the processing done on them, as element attributes are stored as object variables.
Furthermore, path manipulation is intuitive as it is an extension of Python’s mutable sequence.
However, we found that svgpathtools lacked support for some SVG components. Filters and
gradients were the most critical, as they were ignored and therefore not reproduced in the output
file. As a consequence, important visual details were lost. To overcome this issue, we incorporated
a second library called pysvg [20]. This library is similar to traditional XML parsers, and employs
more rudimental methods of storing element attributes. However, it supports virtually all SVG
specifics and thus produces a correct output file. We modified the parser module of pysvg in such
a way that it initialises corresponding shape objects from svgpathtools. The shape objects are
inserted in their respective parse tree nodes.

Mathematical operations The implementation of the steps described in Sections 3.3 to 3.5 are
implemented with NumPy [8]. Among other things, NumPy adds support for multi-dimensional
arrays and matrices, and a range of widely used calculations on these data types.

Polyline to cubic Bézier conversion As mentioned in Section 3.6, Schneider published an imple-
mentation of his algorithm in C [31]. This code snippet has been ported to Python and published
on GitHub [26]. We altered the Python implementation in order for it to seamlessly integrate
with the libraries described in this section.

16

Chapter 4

Experiment design

This chapter describes the experiments that are conducted to evaluate results produced by the pro-
totype. Section 4.1 describes the goals of the experiment. Section 4.2 explains how image fidelity is
validated, and Section 4.3 details how difference in file size is measured. The dataset is described in
Section 4.4. Finally, Section 4.5 outlines the implementation of the experiment.

4.1 Experiment goals

By conducting this experiment, we aim to determine in which areas our proposed method of com-
pression performs adequately and in which it does not. As the proposed method emphasises curves
in SVG images, intuitively we can expect that images containing a large amount of curves produce
better results compared to those with a scarce amount of curves. The results of the experiment should
expose the optimal parameter values for the steps described in Section 3.5 Section 3.6. Furthermore,
the results will clarify what elements contribute to a positive result, and problematic elements be
identified for further research.

4.2 Image fidelity validation

We validate the images that are produced by the prototype based on the fidelity of the output file.
Since the applied compression is lossy, it is expected that some loss of fidelity occurs. By measuring
the difference in fidelity between the input and output file, we obtain the first half of the results
needed for evaluating our proposed solution.

4.2.1 Image comparison

To the best of our knowledge, there is no robust method of directly comparing two SVG images.
While a promising metric to achieve ‘out-of-the-box’ SVG image comparison has been proposed [18],
it is incomplete and further development seems to have come to a halt. A method has been developed
for comparing SVG files based on semantic features to facilitate content based image retrieval from a
database [11]. However, isolating the comparison arithmetics and implementing them is too complex
to be applied within the scope of this research. Thus, considering that image comparison is only
required for our experiment, we have opted to take an alternative approach.

To determine the fidelity difference between the input and output files, the structural similarity
(SSIM) index [48] is calculated. This metric is used by Voormedia in the regression tests for their
existing compression tools. Since its publication the SSIM index has risen to be one of the most popular
methods for image comparison, with the original paper currently boasting over 15,000 citations.

The SSIM index is calculated by comparing two images with respect to three aspects that relate to
human perception of images [17]:

• Luminance variation compares the brightness of the images.

17

(a) Original, SSIM = 1 (b) SSIM = 0.988 (c) SSIM = 0.913

(d) SSIM = 0.840 (e) SSIM = 0.694 (f) SSIM = 0.662

Figure 4.1: SSIM index examples, where the value represents the comparison of each figure with
Figure 4.1a. These images are part of the data set used by Wang in his research [47]

• Contrast variation compares the difference in range of darkest to brightest values of the
images.

• Correlation compares the structure of the images by measuring the covariance between the
images.

The algorithm works by scaling the images so that the resolutions are identical. A window with fixed
dimensions is picked that evaluates a segment of the images for the three aspects described above.
This produces a single score for the segment. After the last segment is evaluated, the individual scores
are averaged. The result is a value in the range [0.0, 1.0], where 0 denotes no correlation whatsoever
and 1 indicates identical images. An example of measured SSIM index values is shown in Figure 4.1.

4.2.2 Acceptable loss of fidelity

While the SSIM index is useful to determine differences between two images, we cannot give the
measurements any value without a threshold value for what is deemed acceptable in terms of fidelity
loss. In the paper that introduced the metric, Wang et al. validated their solution by comparing
subjective results with objective results produced by SSIM index calculation [48].

The subjective results were obtained by letting a subject group rank an image dataset consisting of
344 images that resulted from compressing 29 base images with varying coefficients. The compression
results were ranked ‘bad’, ‘poor’, ‘fair’, ‘good’, or ‘excellent’. After processing the raw data, mean
opinion scores (MOSs) were calculated for each image.

By plotting the MOSs against the SSIM index values that were measured for the same images, it
became clear that the SSIM index performs well in objectively assessing image fidelity. Figure 4.2
shows the plot as reported in the original paper.

Zinner et al. [50] used the results reported by Wang et al. to develop a mapping between subjective
and objective fidelity perception. Figure 4.3 shows the corresponding range of SSIM index values

18

for each MOS. Following this mapping, we are interested in measuring SSIM index values of 0.95 or
greater, as this maps to a MOS of 4 (good) or 5 (excellent).

MOS SSIM

5 (excellent) ≥ 0.99

4 (good) ≥ 0.95 & < 0.99

3 (fair) ≥ 0.88 & < 0.95

2 (poor) ≥ 0.5 & < 0.88

1 (bad) < 0.5

Figure 4.3: Mapping of MOS to SSIM

4.3 File size reduction

The second factor of successful compression is self-explanatory. The output file needs to be smaller
in size than the input file. An equal or even larger file size after compression is unjustifiable. During
the experiment, the input file will be processed by the entire pipeline as described in Section 3.2.
To ensure that we are only measuring the result of the lossy compression step, the input file is also
processed with SVGO and gzip. The file size of the output file is then compared to the input file.
The result is expressed in percentages.

4.4 Dataset

The dataset is composed of a total of 53 SVG images, spread over four different categories:

• Clipart (13 images): these types of images usually have more complex shapes, which we
expect to deliver the best results.

• Logos without text (16 images): while logos may also contain complex shapes, they are
part of a brand identity. The loss of fidelity might thus be less lenient as they are carefully
designed to look like they do.

• Logos with text (15 images): the same applies here, with the additional constraint of
embedded text. Text in logos is usually displayed as a path instead of a text element to correctly
display custom fonts.

• Images with embedded image (9 images): raster images can be embedded in SVG images
by either providing a URL to an external image, or by encoding the image in Base64. The
encoded string can then be supplied to the SVG <image> tag as a data URI, which makes the
SVG file self-contained. Depending on the complexity of the embedded image, the encoded
string can be very long. Since the string must remain unaltered in the output file, the string
length might contribute a considerable amount to the file size. In this case the minor file size
reduction would no longer weigh up to the loss in fidelity.

The clipart images and images with embedded raster images were collected with the API provided by
Openclipart1. Images from the base set were parsed and filtered on <image> tags with an encoded

1https://openclipart.org/

19

https://openclipart.org/

string to form the latter category. The logos were collected from Voormedia’s image repository.

4.5 Experiment implementation

Similar to the prototype, the experiment is also implemented in Python. Python provides the libraries
we need for evaluating the results, and is an excellent tool for performing analyses due to its simple
nature. It also allows us to directly access intermediate results during execution.

4.5.1 SSIM index value measurement

Since the SSIM index value performs raster-based calculations, it can not be calculated using SVG
images as input. Hence, the input and output files are first converted to PNG images with Cairo [49],
a popular open source library for vector graphics manipulation.

The PNG images are loaded with PIL’s Image module [19], which returns a numerical representation
of the loaded image. The SSIM index values are then calculated using the implementation of scikit-
image [36]. The function ssim is found in the scikit-image’s measure module and takes images X and
Y as input.

4.5.2 Parameter bounds

We determined sensible lower and upper bounds for the parameters of each step discussed in Sec-
tions 3.4 to 3.6 by trial and error. It became apparent that the number of iterations for De Casteljau’s
algorithm did not have to be tested for a range of values. Since the Ramer-Douglas-Peucker algorithm
simplifies the polylines in the next step, SSIM index values did not significantly improve beyond 200
iterations for De Casteljau’s algorithm. Conversely, a lower amount of iterations impacted measured
SSIM index values too drastically. This is due to the fact that the data piped to the Ramer-Douglas-
Peucker algorithm is too coarse.

With respect to the Ramer-Douglas-Peucker algorithm, we set the testing range for the error thresh-
old εrdp to 0.1 ≤ εrdp ≤ 1.0 with increments of 0.1. Smaller increments did not affect the measured
SSIM index values enough, and εrdp > 1.0 suffered from too much loss of fidelity.

Finally, the error threshold εp2b for converting polylines to cubic Bézier curves is set to a range of
1 ≤ εp2b ≤ 4 with increments of 1. The same reasoning as for εrdp applies to εp2b.

4.5.3 Execution

For each permutation P (εrdp, εp2b), a function run(epsilon rdp, epsilon p2b) is called. The ex-
periment script walks through directories containing the dataset and inputs each file in the prototype
with the provided error thresholds. Next, the difference in file size is calculated with Python’s os.path
module. The input and output files are converted to PNG and the SSIM index values are calculated. A
diff image is also produced. Although it serves no purpose in this research, the execution time is mea-
sured with Python’s time.time module for the sake of completeness. The results of each permutation
are saved to a CSV file with the name <category>result table dpe<εrdp> se<εp2b>.csv.

20

Chapter 5

Results

This chapter explains the method of presenting the results in Section 5.1. The results of the clipart
images are reported in Section 5.2. Section 5.3 and Section 5.4 present the results of the logos without
and with text respectively. Finally, Section 5.5 reports the results of embedded images.

5.1 Method of presentation

To be able to interpret the raw data produced by the experiment, the data is plotted as a number of
scatter plots. The data is grouped by category. Each group is then subgrouped by the error margin
εp2b. Following the bounds for εp2b as defined in Section 4.5.2, this results in four plots per category.
Each plot shows the measured file size differences in percentages on the x-axis, and the measured
SSIM index values on the y-axis. Each file from the dataset is plotted with a unique color. The
results for each error margin εrdp as defined in Section 4.5.2 are plotted with unique markers in the
color of the specific file. The SSIM index values as defined in Section 4.2.2 corresponding to ‘good’
(≥ 0.95) and ‘excellent’ (≥ 0.99) are plotted with a dashed and dotted line respectively. A vertical
dashed line is plotted at 0% for easier reading.

The results are categorised as follows, for SSIM index value SSIM and file size difference δfs:

• ‘Excellent’ results: SSIM ≥ 0.99 ∧ δfs > 0%

• ‘Good’ results: 0.95 ≤ SSIM < 0.99 ∧ δfs > 0%

• ‘Failed’ results: SSIM < 0.95 ∨ δfs < 0%

This section will include diff images which highlight differences between an input and output file.
These differences are marked in pink. A greater difference between the two files is indicated by a
larger surface of pink highlighting.

5.2 Clipart images

All cases in this category can be seen in Figure 5.1. The attentive reader will notice that case 7
is missing. This case failed to properly convert to PNG and was thus discarded from the dataset.
Figures 5.12 and 5.13 show the results for the clipart images. The permutations of (εrdp, εp2b) per
category are listed in Figure 5.11. The figures reveal a number of interesting cases per category to
evaluate:

• ‘Excellent’ results: case 1 and 6

• ‘Good’ results: case 9 and 10, as they show the widest spread; case 1 and 6, to compare with
the ‘excellent’ results; case 5, as the results are highly dense

• ‘Bad’ results: case 14, as the results are virtually identical regardless of the permutation; case
11, as it shows the worst results

21

(a) case 11 (b) case 2 (c) case 3 (d) case 4 (e) case 13

(f) case 6 (g) case 14 (h) case 9 (i) case 10

(j) case 1 (k) case 12 (l) case 5 (m) case 8

Figure 5.1: Dataset images in the category ‘clipart’

22

5.2.1 ‘Excellent’ results

Case 1 has three permutations that are part of this category, whereas case 6 only has one. For case 6,
we evaluate the permutation with the highest compression rate. Figures 5.2 and 5.3 show the original,
compressed and diff image. The result aligns with the classification ‘excellent’, as it is hard to spot
any differences with the naked eye. However, the compression rates are small. Case 1 and case 6 have
been compressed by 6.78% and 2.5% respectively.

(a) Original image (b) Compressed image (c) Diff image

Figure 5.2: Result of compressing case 1 for εrdp = 0.3, εp2b = 1 with δfs = 6.78%

(a) Original image (b) Compressed image (c) Diff image

Figure 5.3: Result of compressing case 6 for εrdp = 0.4, εp2b = 1 with δfs = 2.5%

5.2.2 ‘Good’ results

We first report on case 1 and 6, to see how they compare to the ‘excellent’ results. Both files are
evaluated for the same εrdp as in the ‘excellent’ result, but with εp2b = 4. Case 1 is shown in Figure 5.4.
Figure 5.4c shows that there is significantly more loss of fidelity, such as in the area where the hand
goes in the pocket. The file size has been reduced by 27.3% for this permutation. As Figure 5.5 shows,
case 6 does not seem to suffer as much from the loss in fidelity. The measured difference is mostly
due to the variation in line thickness. Case 6 is compressed by 21.4% for this permutation.

Case 9 and 10 are displayed in Figures 5.6 and 5.7 respectively. From the full range of permutations
that fall in the category ‘good’, we show the lowest, middle, and highest values for εrdp and εp2b = 1.
Upon close observation the degradaton of fidelity is noticeable. Especially fine lines tend to become
more coarse. However, when glanced over it is difficult to spot differences between the images. In
these cases, the file size reduction is more or less linear.

23

(a) Original image (b) Compressed image (c) Diff image

Figure 5.4: Result of compressing case 1 for εrdp = 0.3, εp2b = 4 with dfs = 27.3%

(a) Original image (b) Compressed image (c) Diff image

Figure 5.5: Result of compressing case 6 for εrdp = 0.4, εp2b = 4 with dfs = 21.4%

(a) Original image (b) εrdp = 0.3, δfs = 4.39% (c) εrdp = 0.5, δfs = 7.97% (d) εrdp = 0.7, δfs = 11.4%

Figure 5.6: Results for case 9 with lowest, middle and highest εrdp and εp2b = 1 that fall in the
category ‘good’

24

(a) Original image (b) εrdp = 0.1, δfs = 21.3% (c) εrdp = 0.5, δfs = 31% (d) εrdp = 1.0, δfs = 40.9%

Figure 5.7: Results for case 10 with lowest, middle and highest εrdp and εp2b = 1 that fall in the
category ‘good’

Case 5 is seen in Figure 5.8. Since the SSIM index values for this case are so densely clustered, we
picked the highest value for εrdp for each value of εp2b. As the images show, it is very hard to spot
differences between the images. The vast amount of lines in this case make it hard for the human eye
to spot differences. However, these lines have low rates of compression: the most lenient setting only
achieves a 7.09% compression result.

(a) εp2b = 1, δfs = 1.93% (b) εp2b = 2, δfs = 3.82% (c) εp2b = 3, δfs = 5.22% (d) εp2b = 4, δfs = 7.09%

Figure 5.8: Results for case 5 with εrdp = 1.0

5.2.3 ‘Bad’ results

Figures 5.9 and 5.10 show the results for case 11 and 14 respectively. Case 14 has an issue with the
top left corner of the bus windows. Varying parameter permutations have virtually no impact on the
file size difference, which does not deviate far from 2%.

The subfigures in Figure 5.10 show the lowest and highest values for εrdp on the top and bottom rows
respectively. Here we can see that both the line simplification as well as the curve fitting drastically
impacts the fidelity of the images. While the file size reductions vary between 33–48%, the images
are heavily distorted.

25

(a) εrdp = 0.1, εp2b = 1 (b) εrdp = 0.1, εp2b = 2 (c) εrdp = 0.1, εp2b = 3 (d) εrdp = 0.1, εp2b = 4

(e) εrdp = 1.0, εp2b = 1 (f) εrdp = 1.0, εp2b = 2 (g) εrdp = 1.0, εp2b = 3 (h) εrdp = 1.0, εp2b = 4

Figure 5.9: Results for case 11

(a) Original image (b) εrdp = 0.1, δfs = 2.08%

(c) εrdp = 0.5, δfs = 2.28% (d) εrdp = 1.0, δfs = 2.35%

Figure 5.10: Results for case 14 with εp2b = 4

‘Excellent’ εp2b values ‘Good’ εp2b values

1 1 2 3 4

case1 {.1, .2, .3} {.4, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case2 {.1, ..., .7} {.1, ..., .5} {.1, .2, .3} {.1, .2}
case3 {.1, ..., .7} {.1}
case4 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case5 {.8, .9, 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case6 {.4} {.5, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case9 {.3, ..., .7} {.1, .2, .3} {.1, .2} {.1, .2}
case10 {.1, ..., 1.} {.1, ..., .7} {.1, .2, .3} {.1}
case12 {.1, .2}
case13 {.8, 1.} {.6, ..., 1.}

Figure 5.11: Permutations of (εrdp, εp2b) for clipart images in their respective categories. The cells
contain the values for εrdp

26

(a) Results for clipart images with εp2b = 1

(b) Results for clipart images with εp2b = 2

Figure 5.12: Results of clipart images for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {1, 2}

27

(a) Results for clipart images with εp2b = 3

(b) Results for clipart images with εp2b = 4

Figure 5.13: Results of clipart images for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {3, 4}

28

5.3 Logos without text

All cases in this category can be seen in Figure 5.14. Figures 5.23 and 5.24 show the results for logos
without text. The permutations of (εrdp, εp2b) per category are listed in Figure 5.22. For this category,
we evaluate the following results:

• ‘Excellent’ results: case 4 and 14

• ‘Good’ results: case 4 and 14, in order to compare with the ‘excellent’ results; case 10, as the
results show little variation and all are qualified as ‘good’; case 13, as lower εrdp values seem to
produce higher compression results for εp2b = 2

• ‘Bad’ results: case 2 and 3, since they have a SSIM index value of 1 and produce identical
results regardless of the permutation; case 9, as it performs the worst

(a) case 1 (b) case 2 (c) case 3 (d) case 4

(e) case 5 (f) case 6 (g) case 7 (h) case 8

(i) case 9 (j) case 10 (k) case 11 (l) case 12

(m) case 13 (n) case 15 (o) case 16 (p) case 14

Figure 5.14: Dataset images in the category ‘logos without text’

5.3.1 ‘Excellent’ results

Figures 5.15 and 5.16 show the results for case 4 and 14 respectively. Case 4 does a good job of
compressing, with no clear loss of fidelity. The file size difference is significant with 32.9%. Case
14 also has significant compression results, although the loss in fidelity is more noticable. Notice
the three holes in the shield; the top left hole is no longer square, and the other two are removed
completely.

(a) Original image (b) Compressed image (c) Diff image

Figure 5.15: Result of compressing case 4 for εrdp = 0.4, εp2b = 1 with δfs = 32.9%

29

(a) Original image (b) Compressed image (c) Diff image

Figure 5.16: Result of compressing case 14 for εrdp = 0.4, εp2b = 1 with δfs = 30.1%

5.3.2 ‘Good’ results

Figure 5.17 shows how varying εp2b values significantly impact the fidelity for both case 4 and 14. In
case 4, the outer ring is no longer a circle which exposes the white surface behind it. The crown and
the lion’s legs in case 14 are either too thick or too thin.

(a) εp2b = 2 (b) εp2b = 2

(c) εp2b = 3 (d) εp2b = 3

(e) εp2b = 4 (f) εp2b = 4

Figure 5.17: Results of compressing case 4 and 14 for εrdp = 0.4 and varying values for εp2b

Although all permutations of case 10 are reported as ‘good’, on closer inspection this case would be
better classified as ‘bad’. Figure 5.18 shows that for the strictest permutation, there are black lines
crossing the yellow cube. For the most lenient permutation, the grip of the magnifying glass is a lot
thicker than in the original, as well as suffering from the black lines.

30

(a) Original image (b) εrdp = 0.1, εp2b = 1 (c) εrdp = 1.0, εp2b = 4

Figure 5.18: Results for case 10 with various values for εrdp, εp2b

Figure 5.19 shows the results of compressing case 13 with the minimum and maximum value for
εrdp and εp2b = 1. Due to the simple nature, it is quite hard to discern the two. However, there is
quite some difference between the file size reductions, where the stricter permutation performs better.
This is unexpected, since less strict compression should result better results.

(a) Original image (b) εrdp = 0.1, δfs = 71.3% (c) εrdp = 1.0, δfs = 64.2%

Figure 5.19: Results for case 13 with εp2b = 1

5.3.3 ‘Bad’ results

Figure 5.20 show the results of case 2 and 3. The SSIM index value of 1.0 for both images asserts
that the images are identical before and after compression. It is easy to spot why: these logos are
composed with straight lines only. Although no compression takes place, the file size is increased.
This needs to be inspected.

(a) Original image (b) εrdp = 1.0, εp2b = 4 (c) Original image (d) εrdp = 1.0, εp2b = 4

Figure 5.20: Results for case 2 with δfs = −4.94% and case 3 with δfs = −7.49%

Figure 5.21 displays case 9, the worst result of this category. The result is heavily distorted.

(a) Original image (b) Compressed image (c) Diff image

Figure 5.21: Result of compressing case 9 for εrdp = 0.5, εp2b = 4

31

‘Excellent’ εp2b values ‘Good’ εp2b values

1 2 1 2 3 4

case4 {.1, .2, .4} {.2} {.3, .5, ..., 1.} {.1, .3, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case5 {.1}
case6 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., .8} {.1, ..., .5, .8}
case7 {.1, ..., 1.} {.1, ..., .5} {.1, .2, .3} {.1}
case10 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case13 {.1, ..., 1.} {.1, .3} {.1} {.1}
case14 {.1, ..., .4} {.5, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case16 {.5} {.5}

Figure 5.22: Permutations of (εrdp, εp2b) for logos without text in their respective categories. The cells
contain the values for εrdp

32

(a) Results for logos without text with εp2b = 1

(b) Results for logos without text with εp2b = 2

Figure 5.23: Results of logos without text for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {1, 2}

33

(a) Results for logos without text with εp2b = 3

(b) Results for logos without text with εp2b = 4

Figure 5.24: Results of logos without text for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {3, 4}

34

5.4 Logos with text

All cases in this category can be seen in Figure 5.25. Figures 5.34 and 5.35 show the results for logos
with text. The permutations of (εrdp, εp2b) per category are listed in Figure 5.33. For this category,
we evaluate the following results:

• ‘Excellent’ results: case 11

• ‘Good’ results: case 11, in order to compare with the ‘excellent’ results; case 12 and 15, as
they show a very wide spread

• ‘Bad’ results: case 1 and 4, since they have a SSIM index value of 1 and produce identical
results regardless of the permutation; case 10, as it produces the worst results; case 6, 9 and 14
as a general performance review

(a) case 1 (b) case 2 (c) case 3 (d) case 4

(e) case 5 (f) case 6 (g) case 7 (h) case 8

(i) case 9 (j) case 10 (k) case 11 (l) case 12

(m) case 13 (n) case 14 (o) case 15

Figure 5.25: Dataset images in the category ‘logos with text’

5.4.1 ‘Excellent’ results

Figure 5.26 shows the result of the only case in the category ‘excellent’. At the intended viewing
size, it is difficult to see where the loss of fidelity occurs. However, upon zooming in it becomes clear
that the clock numbers are suffering from the compression. Furthermore, the hand of the clock is
slightly warped. In this specific case, these errors are not necessarily an issue. The logo intends to
convey the concept of a stopwatch, which is not harmed by the compression. However, more lenient
compression permutations make the numbers even harder to recognise without yielding significantly
better compression results than the strictest permutation.

5.4.2 ‘Good’ results

Case 11 is revisited for this category in Figure 5.27. A strange behaviour is observed for the high-
est values of εp2b: the number 4 is no longer compressed. The rest of the characters are mostly
unrecognisable now, which aligns with the expectations.

Figures 5.28 and 5.29 show the results of case 12 and 15. For case 12 with strict compression
permutations, the result is decent. This is likely due to the curved nature of the letters in the purple

35

(a) Original image (b) εrdp = 0.1, δfs = 28.4% (c) εrdp = 0.8, δfs = 32.8%

(d) Closeup original (e) Closeup εrdp = 0.1 (f) Closeup εrdp = 0.8

Figure 5.26: Results for case 11 with εp2b = 1

(a) εrdp = 0.9, εp2b = 1 (b) εrdp = 0.9, εp2b = 2 (c) εrdp = 0.9, εp2b = 3 (d) εrdp = 0.9, εp2b = 4

(e) εrdp = 1.0, εp2b = 1 (f) εrdp = 1.0, εp2b = 2 (g) εrdp = 1.0, εp2b = 3 (h) εrdp = 1.0, εp2b = 4

Figure 5.27: Closeups of the results for case 11 in the category ‘good’

36

box. However, the subscript is already hard to read. With more lenient permutations, the letters
become unpleasant to read, and the woman also becomes visibly less detailed.

(a) Original image (b) εrdp = 0.1

(c) εrdp = 0.5 (d) εrdp = 1.0

Figure 5.28: Results for case 12 with εp2b = 1

Case 15 performs quite well for the strictest permutation. Although some small details are lost,
this is not clearly visible. However, when εrdp is less strict, the letter quickly gets visibly distorted.

(a) Original image (b) εrdp = 0.1

(c) εrdp = 0.5 (d) εrdp = 1.0

Figure 5.29: Results for case 15 with εp2b = 1

5.4.3 ‘Bad’ results

Both case 1 and 4 remain unaltered after compression. As Figure 5.30 shows, these cases are compa-
rable to the ‘bad’ results from Section 5.3. We need to investigate why the letters remain unchanged
with these cases and why the file size increases.

Case 10 is shown in Figure 5.31. This case performed the poorest out of all cases in the experiment.
There is no element in the image that was compressed correctly. The text is unreadable, straight lines
are no longer straight, and curves are heavily distorted.

Case 6, 9 and 14 are shown in Figure 5.32. These images show that a solution for text compression
is necessary in order for the algorithm to be applicable to a broad range of SVG images.

37

(a) Original image (b) εrdp = 1.0, εp2b = 4 (c) Original image (d) εrdp = 1.0, εp2b = 4

Figure 5.30: Results for case 1 with δfs = −3.09% and case 4 with δfs = −3.75%

(a) Original image (b) Compressed image (c) Diff image

Figure 5.31: Result for case 10 with εrdp = 1.0, εp2b = 4

(a) Case 6 (b) Case 9 (c) Case 14

Figure 5.32: Results for εrdp = 0.1, εp2b = 1

‘Excellent’ εp2b values ‘Good’ εp2b values

{1, ..., 4} 1 2 3 4

case3 {.1, .2, .3} {.1, .2}
case6 {.1, ..., .4} {.3}
case7 {.1, ..., .6} {.1, .2, .3} {.1, .2, .3} {.1, .2, .3}
case8 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case9 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., .9} {.1}
case11 {.1, ..., .8} {.9, 1.} {.9, 1.} {.9, 1.} {.9, 1.}
case12 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case14 {.3, ..., 1.} {1.} {.9}
case15 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., .8, 1.} {.3, ..., .7}

Figure 5.33: Permutations of (εrdp, εp2b) for logos with text in their respective categories. The cells
contain the values for εrdp

38

(a) Results for logos with text with εp2b = 1

(b) Results for logos with text with εp2b = 2

Figure 5.34: Results of logos with text for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {1, 2}

39

(a) Results for logos with text with εp2b = 3

(b) Results for logos with text with εp2b = 4

Figure 5.35: Results of logos with text for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {3, 4}

40

5.5 Images with embedded image

All cases in this category can be seen in Figure 5.36. Figures 5.43 and 5.44 show the results for images
with an embedded image. The permutations of (εrdp, εp2b) per category are listed in Figure 5.42. For
this category, we evaluate the following results:

• ‘Excellent’ results: case 8

• ‘Good’ results: case 6, as file size is heavily influenced by changing εp2b values; case 9, as there
is a sudden drop in quality for permutations with εp2b > 2 and εrdp > 0.4

• ‘Bad’ results: case 4, as it performs the worst; case 3, as it is the only case in this category to
produce no adequate result at all

(a) case 1 (b) case 2 (c) case 3 (d) case 4 (e) case 5

(f) case 6 (g) case 7 (h) case 8 (i) case 9

Figure 5.36: Dataset images in the category ‘images with embedded image’

5.5.1 ‘Excellent’ results

Figure 5.37 shows the result of the only ‘excellent’ case in this category. It is hard to spot any
difference between the images. In terms of compression, there is little difference. After compression,
the image is a meager 0.55% smaller. By removing the embedded image element from the SVG image,
we observe that there is very little actual path data in the file to compress.

(a) Original image (b) Compressed image (c) Diff image
(d) Embedded image re-

moved

Figure 5.37: Result for case 8 with εrdp = 1.0, εp2b = 2, δfs = 0.55%

41

5.5.2 ‘Good’ results

The results of case 6 are shown in Figure 5.38. Upon close inspection, subtle changes in the color
gradient lines can be observed. Higher values for εp2b allow these gradient lines to be less accurate in
resembling the original lines and may account for the increased file size difference.

(a) Original image (b) εp2b = 2, δfs = 3.53% (c) εp2b = 3, δfs = 7.22% (d) εp2b = 2, δfs = 8.61%

Figure 5.38: Results for case 6 with εrdp = 0.1

Figure 5.39 shows the results for case 9 with εrdp = {0.4, 0.5}. The big drop in SSIM index value
is caused by the waves in the shirt. Apparently, the curve fitting does not work anymore with this
permutation. This is likely due to too many points being discarded during the Ramer-Douglas-Peucker
algorithm, which disables a curve from being fitted properly. With a tighter error margin for the curve
fitting this is not a problem, since the curves get broken up in smaller segments.

(a) Original image (b) εrdp = 0.4 (c) εrdp = 0.5

Figure 5.39: Results for case 9 with εp2b = 3

5.5.3 ‘Bad’ results

Case 3 is shown in Figure 5.40. Although the edges of the gears are indeed visibly distorted, the
overall shape of the image is still fairly decent. If the algorithm can be adjusted to detect objects like
the cogs of the gear, images like this case would yield far better results.

The worst result of this category is shown in Figure 5.41. The prototype fails to recognise the
sharp corners that do not need to be compressed. Why the big bumps are produced needs to be
investigated.

42

(a) Original image (b) Compressed image (c) Diff image

Figure 5.40: Result for case 3 with εrdp = 1.0, εp2b = 4

(a) Original image (b) Compressed image (c) Diff image

Figure 5.41: Result for case 4 with εrdp = 1.0, εp2b = 4

‘Excellent’ εp2b values ‘Good’ εp2b values

1 2 {3,4} 1 2 3 4

case2 {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case5 {.5, ..., 1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case6 {.1, ..., 1.} {.1, .5, ..., .8, .9} {.1, .3}
case7 {1.} {.1, ..., 1.} {.1, ..., 1.} {.1, ..., 1.}
case8 {.3, ..., 1.} {.2,.3,.8,1.} {.2, .3} {.4, .7, ..., .9} {.4, ..., 1.} {.4, ..., 1.}
case9 {.1, ..., 1.} {.1, ..., .9} {.1, ..., .4} {.1, ..., .4}

Figure 5.42: Permutations of (εrdp, εp2b) for images with embedded image in their respective cate-
gories. The cells contain the values for εrdp

43

(a) Results for images with embedded image with εp2b = 1

(b) Results for images with embedded image with εp2b = 2

Figure 5.43: Results of images with embedded image for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {1, 2}

44

(a) Results for images with embedded image with εp2b = 3

(b) Results for images with embedded image with εp2b = 4

Figure 5.44: Results of images with embedded image for εrdp ∈ {0.1, 0.2, 0.3, · · · , 1.0} and εp2b ∈ {3, 4}

45

Chapter 6

Discussion

This chapter discusses the results of the research. The results of the experiments are discussed in
Section 6.1. Future work is explored in Section 6.2.

6.1 Prototype performance

The presented results show that the proposed solution is able to produce adequate results. The
successful results align with the expectation that images with many curves, such as clipart images,
are prime candidates for compression. However, the solution currently suffers from severe limitations
that prevents successful compression of all image categories. The main culprit in failing cases seems
to be a high grade of straight lines in a path.

When the prototype parses an SVG file, the number of cubic Bézier curves in each path is counted.
This number is divided by the total number of elements in the path. If the result is lower than 0.2,
the prototype marks it ineligible for compression, as there is too little curve data to gain significant
results. However, unsuccessful results like Figure 5.10 indicate that this threshold might be too strict.
A sample run with the threshold increased did indeed result in a correct image. The output file size,
however, was the same as the input file size. Regardless of the fact that no compression takes place,
this does bring the prototype one step closer to a ‘one-size-fits-all’ solution. If no compression takes
place, the SSIM index value is always 1.0. By definition, lossy compression cannot produce an output
file identical to the input file while also reducing file size. Hence, if the SSIM index value indicates an
identical image, the prototype can report that compression is not feasible for the input image.

With respect to cases as shown in Figures 5.21, 5.31, 5.32 and 5.41, we observed similarities between
the problematic areas in these images. These areas mainly have rectangular shapes with rounded
corners. These corners cause the straight lines to suddenly display bumps and dents. The root cause
of this outcome is found to be in the error margin for curve fitting. Some sample runs with values for
εp2b < 1 displayed improvements in fidelity. Figure 6.1 shows a few examples of these improvements.

If a path contains no curves whatsoever, like in Figures 5.20 and 5.30, no loss of fidelity occurs,
but the file size also increases. This behaviour is unexpected, as the algorithm copies SVG elements
without alterations when those elements are not eligible for compression. Upon closer inspection, we
found that the non-gzipped files were actually identical in size and indeed contained identical data.
The only difference between the input and output files were the order of tag attributes, such as height
and width for the svg tag. The order of these tags is arbitrary and always produces the same result,
regardless of what attribute comes first. The library that we use for parsing SVG, pysvg, is also used
to write the output file to disk. The pysvg library stores tag attributes in a dictionary assigned to
each parsed tag element. Python dictionaries store key-value pairs in arbitrary ways; that is, there is
no way to know in what order the keys are iterated over. Hence, when the output file is written to
disk, iterating over the attribute dictionary does not necessarily reproduce the attributes in the same
order. While this does not pose any difference for a non-gzipped file, the attribute order may impact
a file compressed with gzip as observed in this case. The explanation for this phenomenon is that gzip
uses a fixed window for referencing to previous occurrences [2]. This is necessary to prevent references

46

(a) Original image (b) εrdp = 0.1,εp2b = 0.01
δfs = 18.8%

(c) Original image (d) εrdp = 0.1,εp2b = 0.1
δfs = −6.5%

(e) Original image (f) εrdp = 0.1,εp2b = 0.1
δfs = 4.85%

(g) Original image (h) εrdp = 0.1,εp2b = 0.1
δfs = −0.12%

Figure 6.1: Better fidelity results for lower εp2b values

to previous occurrences so distant from the current occurrence that the reference becomes larger than
the actual segment it is replacing. In this specific case, fewer segments fall within the same window
and thus remain uncompressed by gzip. For larger files, this difference becomes negligible. However,
for smaller files like these logos, it can amount to several percentages.

It is difficult to determine a single optimal permutation of error margins that can be generalised to
compress images with. Some images can endure very lenient error margins and still produce acceptible
results. Especially images with many short, non-straight lines can undergo quite drastic changes in
fidelity while still maintaining a similar overall appearance. On the other hand, images such as logos
tend to require strict error margins to prevent ‘iconic’ details of the logo being lost in the compression
process.

Finally, the results of SVG images with an embedded image show some images simply do not
contain enough compressable data to make it worthwile. The SVG parser could be extended to keep
track of the length of image tags. If the total length of all image tags exceeds a certain threshold,
the compression process can be aborted on the premise that the possible size difference will be too
marginal to make it worthwhile.

6.2 Future work

Based on the experiment results, the proposed solution can be improved on determining what parts of
the input image is eligible for compression. The fidelity of the output file is paramount, and ultimately,
the algorithm should always produce a result that is acceptable in terms of fidelity. Whether or not
the file size reduction is significant, or even present at all, should not take precedence over fidelity. It
has become clear that our proposed method of lossy compression should not be regarded as traditional
raster image compression. In that field, the overall fidelity of the image is compromised, and thus
the goal is to find the right balance between fidelity loss and file size reduction. In SVG compression,
the fidelity of specific elements of an image are compromised while others remain unchanged. Better
results can be achieved once key elements are more accurately identified.

The current approach to identifying those elements is quite coarse. One of the consequences of
this coarse approach is that the algorithm is not able to discern between text and non-text elements.
To the best of our knowledge, a dedicated method to do so does not yet exist. A possible approach
would be to apply OCR to individual path elements and mark them as ineligible for compression if
text is recognised, although this would be a slow and error-prone approach. A less user-friendly but
more rigorous approach would be to add a custom attribute to paths containing text. For example, a
simple contains-text="true" can be added to those paths. The parser can then mark the path as
ineligible.

47

The current method of comparing input and output files is decent at best. The fact that the files
have to be converted to PNG before comparing them makes it unavoidable that some detail is lost.
Furthermore, we found that one case was not properly converted by Cairo. The SSIM index value
proved to be sufficient to evaluate the results of the experiment, but it is by no means perfect for the
job. Future work should implement a better method of comparing SVG files. Further development of
comparison based on semantic features could yield such a method.

48

Chapter 7

Conclusion

In this research, we have introduced a method of compressing SVG images. The method uses existing
algorithms and tools in a pipeline setup to achieve compression. To the best of our knowledge, no
comparable method has been proposed so far with the goal of compressing SVG images.

The method proved to be effective for some test cases. For some cases the benefits were negligible,
and a group of test cases was impacted negatively. We have identified the cause of poor results for
specific test cases. Future research should focus on addressing these causes.

To conclude this research, we will answer the research questions from Section 1.5. First, we address
research question 4:

RQ 4. How can existing knowledge on image compression be applied to SVG?

We found that existing knowledge on image compression is not very relevant to the domain of SVG
compression. This is due to the fundamental difference in how these image types work. The method
of validating the experiment results, however, is based on Voormedia’s regression tests. In those tests,
the same method is used to validate the results of their raster-based compression tools.

Next, we answer research question 2:

RQ 2. When is a reduction in fidelity worthwhile?

The definition of a ‘worthwile reduction in fidelity’ was taken from a research that also incorporated
the SSIM index value. In this research, a mapping was made between scores given by test subjects
and the SSIM index value range that corresponds with these ratings. We validated our results with
the two best categories, ‘excellent’ and ‘good’.

With this definition, we can answer research question 1:

RQ 1. Can lossy compression be applied to SVG images, making the reduction in
fidelity worthwhile?

We found that lossy compression can indeed be applied to SVG images without significantly compro-
mising image fidelity. However, the input image must conform to certain traits to produce successful
compression results. With our proposed solution, it is not reasonable to expect positive results for
any input image.

The last research question remaining is research question 3:

RQ 3. Can the algorithm parameters be approximated for optimal compression results?

This question remains unanswered. The results of the experiment in this research did not show
recurring patterns that could be used for parameter approximation. At best, we can suggest to use
stricter parameters for compression, as this produces a more similar output file.

49

Bibliography

[1] Mohamed S Abdelfattah, Andrei Hagiescu, and Deshanand Singh. Gzip on a chip: High perfor-
mance lossless data compression on FPGAs using OpenCL. In Proceedings of the International
Workshop on OpenCL 2013 & 2014, page 4. ACM, 2014.

[2] Mark Adler. algorithm - does the order of data in a text file affects
its compression ratio? https://stackoverflow.com/questions/14881312/

does-the-order-of-data-in-a-text-file-affects-its-compression-ratio/14885821#

14885821. (Accessed on 07/27/2017).

[3] Wolfgang Boehm, Gerald Farin, and Jürgen Kahmann. A survey of curve and surface methods
in CAGD. Computer Aided Geometric Design, 1(1):1–60, 1984.

[4] Wolfgang Boehm and Andreas Müller. On De Casteljau’s algorithm. Computer Aided Geometric
Design, 16(7):587–605, 1999.

[5] Eduard Braun. Scour - an SVG scrubber. https://github.com/scour-project/scour. (Ac-
cessed on 06/24/2017).

[6] Ken Cabeen and Peter Gent. Image compression and the discrete cosine transform. http:

//www.lokminglui.com/dct.pdf. Accessed on (6/20/2017).

[7] Alesandro Cecconi and Martin Galanda. Adaptive zooming in web cartography. In Computer
Graphics Forum, volume 21, pages 787–799. Wiley Online Library, 2002.

[8] NumPy community. NumPy. http://www.numpy.org/. (Accessed on 07/19/2017).

[9] Erik Dahlström, Jon Ferraiolo, Jun Fujisawa, Doug Schepers, Patrick Dengler, Dean Jack-
son, Anthony Grasso, Cameron McCormack, Jonathan Watt, and Chris Lilley. Scalable
vector graphics (SVG) 1.1 (second edition). W3C recommendation, W3C, August 2011.
http://www.w3.org/TR/2011/REC-SVG11-20110816/.

[10] Erik Dahlström, Doug Schepers, Cameron McCormack, Jonathan Watt, Chris Lilley, Nikos
Andronikos, Rossen Atanassov, Tavmjong Bah, Amelia Bellamy-Royds, Brian Birtles, Bogdan
Brinza, Cyril Concolato, Dirk Schulze, Richard Schwerdtfeger, and Satoru Takagi. Scalable vector
graphics (SVG) 2.0. W3C recommendation, W3C, sept 2016. http://www.w3.org/TR/SVG2/.

[11] Eugenio Di Sciascio, Francesco M Donini, and Marina Mongiello. A logic for SVG documents
query and retrieval. Multimedia Tools and Applications, 24(2):125–153, 2004.

[12] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The International Journal
for Geographic Information and Geovisualization, 10:112–122, 1973.

[13] David Duce, Ivan Herman, and Bob Hopgood. Web 2D graphics file formats. In Computer
Graphics forum, volume 21, pages 43–64. Wiley Online Library, 2002.

[14] Mordy Golding. Real World Adobe Illustrator CS4. Peachpit Press, 2008.

50

https://stackoverflow.com/questions/14881312/does-the-order-of-data-in-a-text-file-affects-its-compression-ratio/14885821#14885821
https://stackoverflow.com/questions/14881312/does-the-order-of-data-in-a-text-file-affects-its-compression-ratio/14885821#14885821
https://stackoverflow.com/questions/14881312/does-the-order-of-data-in-a-text-file-affects-its-compression-ratio/14885821#14885821
https://github.com/scour-project/scour
http://www.lokminglui.com/dct.pdf
http://www.lokminglui.com/dct.pdf
http://www.numpy.org/

[15] Paul Heckbert and Michael Garland. Multiresolution modeling for fast rendering. In Graphics
Interface. Canadian Information Processing Society, 1994.

[16] Paul S Heckbert and Michael Garland. Survey of polygonal surface simplification algorithms.
Technical report, School of Computer Science, Carnegie Mellon University, 1997.

[17] Alain Hore and Djemel Ziou. Image quality metrics: PSNR vs. SSIM. In Pattern recognition
(icpr), 2010 20th international conference on, pages 2366–2369. IEEE, 2010.

[18] Kaiyuan Jiang, Zhiyuan Fang, Yuanting Ge, and Yu Zhou. Information retrieval through SVG-
based vector images using an original method. In e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, pages 183–188. IEEE, 2007.

[19] Mark Lutz. Programming Python: Powerful Object-Oriented Programming. ”O’Reilly Media,
Inc.”, 2010.

[20] Kerim Mansour. pysvg 0.2.2 : Python package index. https://pypi.python.org/pypi/pysvg/
0.2.2. (Accessed on 07/19/2017).

[21] David Mulder and Curtis Welborn. Lessons in converting from Python to C++. Journal of
Computing Sciences in Colleges, 29(2):49–57, 2013.

[22] Andreas Neumann and Andréas M Winter. Time for SVG: towards high quality interactive
web-maps. International Cartographic Association, 2001.

[23] Extensible graphics with SVG. http://archive.oreilly.com/pub/a/network/2000/04/28/

feature/svg.html. (Accessed on 06/21/2017).

[24] Ananthanarayanan Parasuraman, Valarie A Zeithaml, and Arvind Malhotra. ES-QUAL: a
multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(3):213–
233, 2005.

[25] Zhong-Ren Peng and Chuanrong Zhang. The roles of geography markup language (GML), scal-
able vector graphics (SVG), and web feature service (WFS) specifications in the development of
internet geographic information systems (GIS). Journal of Geographical Systems, 6(2):95–116,
2004.

[26] Volker Poplawski. fitCurves: Python implementation of Philip J. Schneider’s ”algorithm for
automatically fitting digitized curves” from the book ”graphics gems”. https://github.com/

volkerp/fitCurves. (Accessed on 06/26/2017).

[27] Andy Port. svgpathtools 1.3.1 : Python package index. https://pypi.python.org/pypi/

svgpathtools. (Accessed on 07/19/2017).

[28] Antoine Quint. Scalable vector graphics. IEEE MultiMedia, 10(3):99–102, 2003.

[29] Aleksas Rǐskus. Approximation of a cubic Bézier curve by circular arcs and vice versa. Informa-
tion Technology and Control, 35(4), 2006.

[30] Alan Saalfeld. Topologically consistent line simplification with the Douglas-Peucker algorithm.
Cartography and Geographic Information Science, 26(1):7–18, 1999.

[31] Philip J. Schneider. GraphicsGems/FitCurves.c. https://github.com/erich666/

GraphicsGems/blob/master/gems/FitCurves.c. (Accessed on 07/19/2017).

[32] Philip J. Schneider. An algorithm for automatically fitting digitized curves. In Andrew S.
Glassner, editor, Graphics Gems, pages 612–626. Academic Press, 1990.

[33] Thomas W Sederberg. Computer aided geometric design. Computer Aided Geometric Design
Course Notes, 2012.

51

https://pypi.python.org/pypi/pysvg/0.2.2
https://pypi.python.org/pypi/pysvg/0.2.2
http://archive.oreilly.com/pub/a/network/2000/04/28/feature/svg.html
http://archive.oreilly.com/pub/a/network/2000/04/28/feature/svg.html
https://github.com/volkerp/fitCurves
https://github.com/volkerp/fitCurves
https://pypi.python.org/pypi/svgpathtools
https://pypi.python.org/pypi/svgpathtools
https://github.com/erich666/GraphicsGems/blob/master/gems/FitCurves.c
https://github.com/erich666/GraphicsGems/blob/master/gems/FitCurves.c

[34] Wenzhong Shi and ChuiKwan Cheung. Performance evaluation of line simplification algorithms
for vector generalization. The Cartographic Journal, 43(1):27–44, 2006.

[35] Lev Solntsev. SVGO: Nodejs-based tool for optimizing SVG vector graphics files. https://

github.com/svg/svgo. (Accessed on 06/24/2017).

[36] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D
Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-image: image processing in
Python. PeerJ, 2:e453, 2014.

[37] Guido Van Rossum and Fred L Drake. The Python language reference manual. Network Theory
Ltd., 2011.

[38] Basic shapes, SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG11/shapes.html. (Ac-
cessed on 06/21/2017).

[39] Clipping, masking and compositing, SVG 1.1 (Second Edition). https://www.w3.org/TR/

SVG11/masking.html. (Accessed on 06/21/2017).

[40] Document structure, SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG11/struct.html.
(Accessed on 06/21/2017).

[41] Filter effects, SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG11/filters.html. (Ac-
cessed on 06/21/2017).

[42] Gradients and patterns, SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG11/pservers.
html. (Accessed on 06/21/2017).

[43] Implementation requirements, SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG11/

implnote.html#ArcImplementationNotes. (Accessed on 06/25/2017).

[44] Minimizing SVG file sizes SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG/minimize.
html. (Accessed on 07/18/2017).

[45] Paths, SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG11/paths.html. (Accessed on
06/21/2017).

[46] Text, SVG 1.1 (Second Edition). https://www.w3.org/TR/SVG11/text.html. (Accessed on
06/21/2017).

[47] Zhou Wang. The SSIM index for image quality assessment. https://ece.uwaterloo.ca/

~z70wang/research/ssim/. (Accessed on 08/15/2017).

[48] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

[49] Carl Worth and Behdad Esfahbod. Cairo. https://www.cairographics.org/. (Accessed on
07/20/2017).

[50] Thomas Zinner, Osama Abboud, Oliver Hohlfeld, Tobias Hossfeld, and Phuoc Tran-Gia. Towards
QoE management for scalable video streaming. In 21th ITC Specialist Seminar on Multimedia
Applications-Traffic, Performance and QoE, pages 64–69, 2010.

52

https://github.com/svg/svgo
https://github.com/svg/svgo
https://www.w3.org/TR/SVG11/shapes.html
https://www.w3.org/TR/SVG11/masking.html
https://www.w3.org/TR/SVG11/masking.html
https://www.w3.org/TR/SVG11/struct.html
https://www.w3.org/TR/SVG11/filters.html
https://www.w3.org/TR/SVG11/pservers.html
https://www.w3.org/TR/SVG11/pservers.html
https://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
https://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
https://www.w3.org/TR/SVG/minimize.html
https://www.w3.org/TR/SVG/minimize.html
https://www.w3.org/TR/SVG11/paths.html
https://www.w3.org/TR/SVG11/text.html
https://ece.uwaterloo.ca/~z70wang/research/ssim/
https://ece.uwaterloo.ca/~z70wang/research/ssim/
https://www.cairographics.org/

